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ABSTRACT

This article considers the analysis of a doubly é&lpcensored data, drawn from a new two-paramédttime
distribution with bathtub shape or increasing faluate function. Where, the one- and two-samplgeBian prediction
schemes have been used for driving prediction bewficdrdering unobserved lifetimes from the undagydistribution.
For illustration purposes, some numerical examplesgiven. The accuracy of the resulting Bayesi&diption bounds,
as well as percentage coverage, for future unobdemwdered lifetimes are investigated. This is ddaeextensive Monte

Carlo simulation experiments based on 10,000 ranhk.e

KEYWORDS: Doubly Type-ll Censored Sample, One-And Two-Sampledictions, Bayesian Predic- Tion,

Percentage Coverage, Monte Carlo Simulation
1. INTRODUCTION

In many statistical problems, researchers needst the past results of data, which are relatedotoes
distribution, to predict future data from the sadistribution. Such problems have received muchntitie by many
authors, including Dunsmore (1974), Aitchison anchBmore (1975) and Geisser (1993). Bayesian pieditttervals for
future observations have been discussed in sevartitles, see e. g. Others, including Jaheen (2002)
AL-Hussaini and Ahmad (2003), Howlader et al. (200%mad (2011), Mohie EI-Din and Shafay (2011)/&&sishnan
and Shafay (2012), Ateya (2013), AL-Hussaini et @015) Niazi (2016) and Niazi and Abd-Elrahman 12D
A new two-parameter lifetime distribution with bath shape or increasing failure rate function hesnbintroduced by
Chen (2000). We shall denote this distribution @&yen(4; ). Its cumulative distribution function (cdf) andeth
probability density function (pdf) are, respectiuadiven by

Fy(x)=1- e_'l(eXB _1), (1)
and
() =28 xﬁ—le"ﬁ‘l(exl;*),x >0,1>0,8>0. )

Suppose that n items, x,, -, x,,, are put on a life test. The test starts at timbud only the ordered lifetimes
Xy < X1y <0 < X1 < s <r <mn, are observed. This means that, the figst- 1) ordered lifetimes,
as well as the lagtn — r) ordered lifetimes were not observed. The incoreptetiered observed lifetimes are referred to
as doubly Type-Il censored sample. As a speciat,dass will known that, when s = 1, this sampleuld be the well

known Type-Il right censored sample.
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22 Sherif F. Niazi & Ayman M. Abd-Elrahman

On the other hand, when= 1 andn = r the resulting sample is then the complete sample.

In the Bayesian prediction bounds, we shall comstd® of the most commonly used schemes, nameby, th

one- and two-sample schemes.

In the one-sample scheme, based on a doubly Tymeiisored sample, each af,.q),X¢42) ) X

As unobserved lifetimes need to be predicted, ssssér (1993).

In the two-sample scheme, based on a doubly Typeehsored sample fron€hen(4,B) distribution
(past sample), a new ordered sample of size mrfusample) from the same distribution needs to tealigted.
In another word, let) < x¢.1y) <+ < X be ordered observed lifetimes, out of n, we neegrédict the boundaries

of each member of a new ordered sample, see Dupg(h®@r4).

In this article, Bayesian prediction intervals fimture ordered lifetimes, having th&hen(A, ) distribution
obtained, will be done based on a given doubly fiypeensored sample from this distribution. Assugnithat the
parametels is known, Section 2 is devoted to obtaining Bagregirediction bounds (BPBs) for future observatifsom
the Chen(4, B) distribution. Section 3 is concerned with the BRBsblem, assuming that both of the two parameters
and S are unknown. The one and two-sample schemes aisideved in both of the one and the two parameigsss.
A numerical example is given to illustrate the mdgres, and the accuracy of prediction intervalgngstigated via

Monte Carlo simulation.
2. ONE PARAMETER CASE

Let x(5), X(s+1), **» X() D€ @ doubly Type-Il censored sample frorGren (4, §) distribution, whose cdf and pdf
are as given by (1) and (2), respectively. Theliliked function for the parametetsandp, is then given by

L(A,B; x) & GBY* Sih wy () =2 " exp{Siyxf =2 T(x)} x> 3)

s—1
wherex s, X(s41y, = Xy, w5 (k) = (—1)"( i ) and

T(x) = ¥I_s (e’“g) —1)+k (ex([i) ~1)+ (- (e - 1)

Assuming that the parametgris known, in view of (3), it might be clear thdiet parametei can have a

gamma(a,, b;) conjugate prior distribution with pdf of the form

ai
b

a,—1,-bi1
F(al)l 17le™™14 1 > 0,(ay, by > 0). (4)

g1(D) =
By using (3) and (4) the posterior density functionA can be written as follows

Gi(A]8,x) = Car =5+ $37h w, (k) exp{~A(T(x) + by )} ®)

where(; is the normalizing constant given @§(x) + b;)

Crt = T(dy) T5bws (k) (T(x) +by) ™, 6)

whered, = r — s + a; + 1, ws(k) andT (x) is as given in (3).
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As can be seen from (5), the posterior densitygarama(d,, b, + T(x)) distribution.

In what follows, we shall obtain Bayesian prediotimtervals for future observations in either theeoor

two-sample schemes.
2.1. Bayesian One-Sample Prediction

Let ¥(a) = X(+a)1 < a < n—r denotes the future (unobserved) lifetime of #fé component to fail.

The conditional probability density functions gf given the parametef and thatr components can be written as
(see Arnold et al. (1992))

hy (Y A, B) =

Dy (@) [Fx (Va4 B) = Fr (s A B)]" 1 = FeGriays A B)]™ ™ % [1 = Fx(xari 4 B)] ™" e a4, B 7)
where,
Di(a) = a (n ; r). (8)

Substituting (1) and (2) in (7) we obtain for tfiken (4, 8) model

_ B B
hy (Vi A, B) = Dy(@) Zizt w_(@) (&) BAyL ™ exp {y{; — Aby(£)(e”@ — e"m)},y@ > X, 9)
where,
b,)=n—-r—a+4+1 (20)

andw, (¥) is the same as;(k), given in (3), witha and? instead ok andk .

The Bayesian predictive density function of Y =({a)) is given by (see Dunsmore (1974))
h !0 = hy(yw |2 B) g7 (A]B, x)dA, y(0) > Xy, (11)

where, hy (v |4 B) is the conditional pdf off = y) = xgyapa=1,2,,n—7 andgi(A|B,x) is the

posterior density of the parametérandg .

Using (5), (9), and (11), we have

B
waDws(Opyly e’ @

hi(Vwlx) = Di(@)CiT(do + D X655 i;})[ s 12)

BB
ba({’)<ey (a)—ex(r))+T(x)+b1

where,w; (k) andT (x) are as given in (3), whilB, (a) andb, (¥) are as given, respectively, by (8) and (10).

Bayesian prediction bounds for the future ordetisdtes y ) = x(,,,) are obtained by evaluatin@”[Y(a) >

vy |a; x] for somey,. It follows from (12), that

PrlY 2 vilasxl = 7 i (e |x)dye = Di(@CiI(do) £625 Eich penet m- (13)
ba(e)[ba(e)<e"1 —ex(r))+T(£)+b1

A 100 (1 —1) % Bayesian prediction interval fop) = X1y IS SuchPr[L(x) < Yoy < U] = 1-—
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24 Sherif F. Niazi & Ayman M. Abd-Elrahman

7,where L(x) and U(x) are the lower and upper bounds fgp) = x4 - Thus equating (13) td—% ) andg,

we obtain
Dy(a)C:T(do) T423 Tich 2alBesC) Hm=1-% (14)
ba(f)[ba(f)<eL(E)B—exfﬂ)w@wl ’
and
Dy (a)C,T(dy) 424 57 ©al005C0) =1 (15)

B
ba(®) [ba({’)(e U(E)B—ex(r))+r(£)+b1

2.2. Bayesian Two-Sample Prediction

Suppose that we have two samples, the informathes (past sample) is a doubly Type-ll censored sampl
while the second one (future sample) is an ordeyauhple from the same population. Based on the gasiple,
we would like to obtain Bayesian prediction boufmisthe b** observatiorZ,), b = 1,2,---,m . To do this, le, be the
bt" ordered observation in the future sample of sizethose pdf is given by (\ref (e1)). The conditiodahsity function

of Z ) for a given parameter andg is

ha (207 2. B) = Da(B)[1 = Fy(200y; 1. B)]™ " [z A B)]” ™ Fie (23 4. B, (16)
where,
D,(b) = b (Zl) (17)

Applying (1) and (2), in (16), we get

he (2 4 B) = Dy () B2zt wp (DA B 255 exp {zg,) _Aby() (e — 1)},z(b) >0, (18)
where,

by()=m—-b+j+1 (19)
and

wy, (j) is given in (3) withh andj replacings and?.
Applying the posterior density function (18) and tbonditional probability density function (18) (1) the

Bayesian predictive density function®f,,b = 1,2,---,m is then given by

2B
ws(wp(NApe ®)

[bg(j)<ez(b) - 1)+T(§)+b1

h3(2a]x) = J; hz (2094, B)gi (2|8, x)dB = Do (B)C:T(do + 1) £5=5 B35

i (20)

where, d, is given in (6) and;(j) is given by (19).

Bayesian prediction bounds for the future ordetisttes zy), b = 1,2,---,m, are obtained by evaluating

Pr|[Z ) = v,|4; x] for somev,. It follows from (\ref (€28)) that
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s(k J
Pr(Zw) 2 v,|2 x1 = [}, h3(20)|x)dzr) = D2(B)CiT(do) Xj=3 Tih w; ) s (21)
bE(j)[bE(j)(ez(b) - 1)+T(§)+b1

A 100 (1 — 7)% Bayesian prediction interval fag,y, b = 1,2,--,m is suchPr (L(g) < Zgy < U(g)) =1-

7, whereL(x) andU(x) are the lower and upper bounds4gy, b = 1,2,---,m. Thus equating (\ref(€29)) to — % and%,

we obtain
D, (DA (do) T4 Bich O =11 (22)
bi%(j)[bﬁ(j)(e“ﬁ)ﬁ—l)+r(£)+b1 :
and
D, (B)C,T'(do) T423 Tich ke =1 (23)

bb(j)[bg(j)(gu(ﬁ)ﬁ—1)+T(£)+b1

3. TWO-PARAMETER CASE

This section is concerned with Bayesian predictibfuture observations of the Chen distribution wimth of
the two parameters andfB are unknown. This bivariate prior density functiwas used by Sarhan et €012)in their

parameter estimation for a tow-parameter batht@psti lifetime distribution.

Suppose that the prior belief of the experimergemeasured by the bivariate prior density funcfiama and,

given by
94B) = 9:(Dg:(B), (24)
where,g, (1) is a conjugate prior given by (4) and
92(8) = 25 et 2B B > 0,(az by > 0). (25)

Using the likelihood function given by (3) and theint prior density function given by (24),

the joint posterior density function of \lambda abdta is
95 (LB, |x) = C, &r=s*tarpr=s+ez ih o (k) TTi_sx! ™ exp{TiLsxf) —b2 B —A[T) + by } (26)
where,C, is the normalizing constant given by
7t = T(do) Zizh ws (k) To(x), 27)

where,d, is given in (6) and

to(a) = [ oo e{ (8 = 1 Zizalnx + Doy — baf JaB (28)

3.1. Bayesian One-Sample Predictions

Similarly and as before, let furthefg,) = x4y, 1 < a < n —r be thea™ unobserved lifetime, which needs
to be predicted. The conditional densityygf, is given by (9). Applying the conditional densitinction given by (9) and
the posterior density function given by (26), theyBs predictive density function of;, is then given by
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h(vwlx) = 1 17 (vl B) g3 Bl x) dAdp =
F(do +1) C, Dy (a) Z?;& Z}Sc_:%) wa({)) ws(k)11 (Y(a)'ﬁ)' (29)

where,

o BTTSTA2TL yﬁ)lexp{(ﬁ—l) Yi_sIn x(i)+2ir=sx(ri)+y51)—bzﬁ}

do+1 dﬁ
ap

LY@0) = [y PR
[ba({’)(ey(”—)—ex(7)>+b1+T(£)

Bayesian prediction bounds %f,) are obtained by evaluatiy[Y,) = v3| x] for somev; . It follows from (29)

Pr{Yiey = vslx] = [ 15 (viw|x)dyiay = T(do)C, Dy(@) Bi=g Tich 222 1 (v, x), (30)

where,

w0 BT5492 exp{(B-1) Tizs In x(g) +21_g o £ -b28)

I(vs,x) = [ [bam<ev§_exfr))+b1+T(z)]

dgp. (31)

A 100 (1 —7) % Bayesian prediction interval foy) = X1q) iS suchPr[L(x) < Yy < U] = 1—71,
whereL(x) andU (x) are the lower and upper boundsfgy = x(,.+4)- Thus equating (30) tb — %and%, we obtain

a— a ¢ S
[(do)C, Dy (@) T623 Tich 22 (L(x),x) = 1 - (32)
and
[(do)C, D (@) 2423 Tizh @ 1, (U (x),2) = (33)

where,l, (L(x), x) andl, (U(x), x) are given by (31) witlr; being replaced, respectively, bgx) andU(g).
3.2. Bayesian Two-Sample Prediction

As before, assume thdi, is thebt™ ordered lifetime in a future, unobserved, samglenocomponents whose
lifetimes follow the Chen(4,B) distribution given by (1). Thus, the density fuoot of Z, is given by (18).
Applying the conditional and posterior density ftions given by (18) and (26), respectively, the &agn predictive

density function o, ,b =1,2,...,m, is given by
WZwl0) = I, 1) hz(zay|2 B) 934 Bl x) dA dp
=TI(dy + 1)C, D, (b) Z F wp (Nws (k)5 (zp), x), (34)
where,

oo BTS20 exp{(B—1) S In x(i)+Eizs X6 ~b2 )

En dp

Iz x) = J;

[
[b,*,(j)(ez(b)—l)+b1+7(x_)

Bayesian prediction bounds for the future ordetisttes z;, , whereb = 1,2,---,m , are obtained by evaluating

Pr{zw) = v4| x ] for somev, . It follows from (34) that
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Pr{Za) 2 \nuy| 2] = [ hi (20 |%) dzy)

= T(do)C; D (0) B Tich 2t (v ) (35)

where

o BTSTaz-1 (B-D XN Inx)+ 2l xP b, 8
14(1/4;5) = fo eXp{ o :iosxm : }dﬁ (39)

. vﬁ
[bb(])<e 4 —1)+b1+T(x_)]

A 100 (1—17)% Bayesian prediction interval forzg, is such Pr[L(x)< Zpy < U(x)] =1-71,

where,L(x ) andU(x ) are the lower and upper boundszfgy.

Thus equating (35) to — % andg, we obtain

(do)C2 Dy (0) B4 Bizb 221 (L(x ) x) =13 (37)
and

['(do)C, D, (b) XPt yisz1 epWes® =1 38
(do)C2 D, ( )Zj:o k=0""p2 1) 4( ({),E) =13 (38)

where,l,(L(x), x) andl,(U(x), x) are given by (36) witlr, being replaced, b¥(x) andJ(x), respectively.

4. NUMERICAL ILLUSTRATIONS

This section is devoted to illustrating both theeomand two-sample prediction assuming that the riank)

two-parameter case. Where, two numerical exampkegigen to illustrate the results of Sections&ntl 3.2. The results

related to one-parameter case may be similarlyt cétl.

4.1. Example 1: (One-Sample Prediction)

The 95 % Bayesian prediction bounds for the remainfing- r) order statistics = 1,2,---,n —r, are obtained

according to the following steps:

1.

For given values of the hyper parametersandb, a generated value dfis obtained from the prior distribution
with pdf (4).

For a given value of the hyper parametessand b_2 a generated value ¢f is obtained from the prior
distribution with pdf (25).
Using the generated values of \lambda #nérom Steps 1 and 2, a sample of sizés generated from the

Chen(A, B) distribution with pdf, which is given by (1).

Using some sorting routine, a doubly Type-Il cerslcsample of siz& — s + 1) from the Chen (\lambda, \beta)

distribution is then obtained.

Based on the above generated doubly Type-Il cedsaeples of sizé — s + 1), the95 % Bayesian prediction
bounds for the remainingn —r) ordered valueg, ), Xu+2), ", Xm) , are then numerically calculated by

solving Equations (32) and (33).
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In this example, three different values for the ghasize, namelyn = 20,30 or 40, and the hyperparamters
a;,b;,a, andb, are chosen to b, 3,2 and2, respectively. This particular choice of the hy@egmters suggests that
A =1.1552 andf = 1.7327. Table 1 present35 % Bayesian prediction intervals fag,,sy = y;,s = 1,---,5, and their

corresponding lengths.

The percentage coverage of eaghs = 1,:--,5 , can be obtained by generatih@,000 future samples each of
sizen —r =5, from the sam&€hen(4, B) distribution with cdf given by (1), such thgt > x,., then calculate the actual

predicted levels of, , wheres = 1,2, ---,5. These percentage coverages are also displayeabia 1.

Table 1: 95 % Bayesian Prediction Intervals fory;, y,, -+, ys

r Y1 Y12 Y3 YVa Ys
1 95.20 % 95.85% 96.63% 97.66% 98.27%
15 | 2* | (0.4196, 0.6592)| (0.4358,0.8052) (0.4678,0.9665) .51@7,1.1767)| (0.5948,1.5357)
3" 0.2396 0.3694 0.4986 0.6600 0.9409
1 96.38% 96.94% 97.24% 97.53% 97.76%
25 | 2* | (0.7861,0.9827)| (0.7982,1.1120) (0.8222,1.2583) 85®4,1.4515)| (0.9203,1.7839)
3" 0.1967 0.3139 0.4361 0.5921 0.8635
1 95.64% 96.26% 97.04% 97.74% 97.69%
35| 2* | (0.8021,0.9724)| (0.8130,1.0830) (0.8349,1.2078) 86@2,1.3729)| (0.9261,1.6594)
3* 0.1703 0.2700 0.3729 0.5037 0.7333

1* Simulated prediction levels ¢f,s = 1,--:,5 .

2* Bayesian prediction intervals for,s = 1,---,5.

3* Length of the Bayesian prediction intervals
4.2. Example 2: (Two-Sample Prediction)

In this example, an “observed” doubly Type-ll cemsbsamplex .1y, X(s+2), " X¢), IS generated by using
Steps 1-4, as given in Section (4.1). The values ef , b, , a, andb, are chosen as in the above example. Based on these
values and the generated sample, %6860 Bayesian prediction bounds for a future “unobséhwsample of sizen =5,
Z1), Z(2), " Z(s), are obtained by solving Equations (37) and (88parately. The 95% Bayesian prediction intervais f
Zwy, k = 1,---,5, are presented in Table (2) together with theirezponding lengths.

The percentage coverage of eaghk = 1,---, 5, can be obtained by generating 10,000 futuneptes each of
size m=5, from the sam@&hen(4, ) distribution with cdf given by (1), then calculdtee actual prediction levels ef ,

wherek = 1,2,-:+,5. These percentage coverages are also displayeabie 2.

Table 1: 95 % Bayesian Prediction Intervals forz,, z,, -+, Z5

r zZ; Zy Z3 Z, Zs
1* 95.97% 96.09% 96.08% 96.06% 97.17%
15 | 2* | (0.0056, 0.4291)] (0.0432,0.6038)  (0.1089, 0.7816)0.2020, .0059)| (0.3388, .3876
3* 0.4235 0.5606 0.6727 0.8039 1.0488
1T 96.53% 96.46% 95.98% 95.70% 95.56%
25 | 2 | (0.0071, 0.4978)] (0.0549, 0.6961) (0.1372, 0.89260.2517,1.1338)] (0.4166,1.5315)
3* 0.4907 0.6412 0.7554 0.8821 1.1149
1" 96.04 % 96.00% 95.92% 95.49% 95.86%
35 | 2° | (0.0073,0.4602)] (0.0540,0.648]) (0.1318, 0.833200.2389,0.0571)| (0.3936,1.4197)
3* 0.4529 0.5941 0.7014 0.8182 1.0261
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1* Simulated prediction levels af,, k = 1,---,5 .
2* Bayesian prediction intervals fof, k = 1,:-+,5.
3* Length of the Bayesian prediction intervals

5. CONCLUSIONS

In this article, Bayesian prediction bounds areamt#d for future observations from the two paramete
Chen(4, B) distribution. It has been noticed from Tables @ arthat, which prediction intervals are affectgdrxreasing
n, and in this case, the coverage probabilitiegjait® close to the confidence levels 95 %, ancefoee the intervals tend
to perform very well in terms of simulated coverggebabilities. The Bayesian prediction intervals the smallest and
the largest future ordered lifetimes, which arecpcally of some special interest, are considemedhe simulation.
The aim of this simulation is to show how goodtie given Bayesian prediction intervals for the fatlifetimes. The

simulated percentage converges are all quite ¢ttodes nominated ones.
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