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ABSTRACT 

This article considers the analysis of a doubly Type-II censored data, drawn from a new two-parameter lifetime 

distribution with bathtub shape or increasing failure rate function. Where, the one- and two-sample Bayesian prediction 

schemes have been used for driving prediction bounds of ordering unobserved lifetimes from the underlying distribution. 

For illustration purposes, some numerical examples are given. The accuracy of the resulting Bayesian prediction bounds,   

as well as percentage coverage, for future unobserved ordered lifetimes are investigated. This is done via extensive Monte 

Carlo simulation experiments based on 10,000 runs each.  

KEYWORDS:  Doubly Type-II Censored Sample, One-And Two-Sample Predictions, Bayesian Predic- Tion, 

Percentage Coverage, Monte Carlo Simulation 

1. INTRODUCTION 

In many statistical problems, researchers need to use the past results of data, which are related to some 

distribution, to predict future data from the same distribution. Such problems have received much attention by many 

authors, including Dunsmore (1974), Aitchison and Dunsmore (1975) and Geisser (1993). Bayesian prediction intervals for 

future observations have been discussed in several articles, see e. g. Others, including Jaheen (2002),                                   

AL-Hussaini and Ahmad (2003), Howlader et al. (2007), Ahmad (2011), Mohie El-Din and Shafay (2011), Balakrishnan 

and Shafay (2012), Ateya (2013), AL-Hussaini et al. (2015) Niazi (2016) and Niazi and Abd-Elrahman (2015).                  

A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function has been introduced by 

Chen (2000). We shall denote this distribution by �ℎ��(�	; 	). Its cumulative distribution function (cdf) and the 

probability density function (pdf) are, respectively, given by 

��(
) = 1 − �������	���,               (1) 

and  

��(
) = �			
������������	���, 
 > 0, � > 0, 	 > 0.	           (2) 

Suppose that n items,
�, 
 , ⋯ , 
", are put on a life test. The test starts at time 0, but only the ordered lifetimes 


(#) 	< 	 
(#%�) 	< ⋯ 	< 	 
(&), 1	 < 	'	 < 	(	 < 	�, are observed. This means that, the first (' − 	1) ordered lifetimes,              

as well as the last (� − 	() ordered lifetimes were not observed. The incomplete ordered observed lifetimes are referred to 

as doubly Type-II censored sample. As a special case, it is will known that, when s = 1, this sample would be the well 

known Type-II right censored sample.  
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On the other hand, when '	 = 	1 and �	 = 	( the resulting sample is then the complete sample.  

In the Bayesian prediction bounds, we shall consider two of the most commonly used schemes, namely, the              

one- and two-sample schemes.  

In the one-sample scheme, based on a doubly Type-II censored sample, each of 
(&%�), 
(&% ), ⋯ , 
(")                           
As unobserved lifetimes need to be predicted, see Geisser (1993). 

In the two-sample scheme, based on a doubly Type-II censored sample from �ℎ��(�, 	) distribution                

(past sample), a new ordered sample of size m (future sample) from the same distribution needs to be predicted.                 

In another word, let 
(#) 	< 	 
(#%�) < ⋯	< 	
(&)	 be ordered observed lifetimes, out of n, we need to predict the boundaries 

of each member of a new ordered sample, see Dunsmore (1974).  

In this article, Bayesian prediction intervals for future ordered lifetimes, having the �ℎ��(�, 	) distribution 

obtained, will be done based on a given doubly Type-II censored sample from this distribution. Assuming that the 

parameter 	 is known, Section 2 is devoted to obtaining Bayesian prediction bounds (BPBs) for future observations from 

the �ℎ��(�, 	) distribution. Section 3 is concerned with the BPBs problem, assuming that both of the two parameters � 

and 	 are unknown. The one and two-sample schemes are considered in both of the one and the two parameters cases.                     

A numerical example is given to illustrate the procedures, and the accuracy of prediction intervals is investigated via 

Monte Carlo simulation. 

2. ONE PARAMETER CASE 

Let 
(#), 
(#%�), ⋯ , 
(&) be a doubly Type-II censored sample from a �ℎ��(�, 	) distribution, whose cdf and pdf 

are as given by (1) and (2), respectively. The likelihood function for the parameters � and 	, is then given by 

	)*�, 	;	
+ ∝ (�	)&�#%�∑ .#(/)#��012 ∏ 
4���&41# �
56∑ 
4� − �	7*
+&41# 8, 
# >          (3) 

where 
(#), 
(#%�), ⋯ , 
(&), .#(/) = (−1)0 9' − 1/ : and  

7*
+ = ∑ ���(;)� − 1� + / ���(=)� − 1�&41# + (� − ()(��(>)� − 1)  
Assuming that the parameter 	 is known, in view of (3), it might be clear that the parameter � can have a 

?@AA@(@�, B�) conjugate prior distribution with pdf of the form 

?�(�) = CDEDF(GD) �GD����CD� , � > 	0, (@�, B� 	> 0).	            (4) 

By using (3) and (4) the posterior density function for � can be written as follows 

?�∗*�I	, 
+ = ���&�#%GD ∑ .#(/)#��012 �
5J−�*7*
+ + B�+K	           (5) 

where �� is the normalizing constant given by	(7(
) + B�) 
���� 	= Γ(M2)	∑ .#	(/)#��012 	*7*
+ + B�+�NO ,	            (6) 

where M2 	= 	(	 − 	'	 +	@� + 1,.#(/) and 7(
) is as given in (3). 
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As can be seen from (5), the posterior density is a gamma (M2, B� + 7(
)) distribution. 

In what follows, we shall obtain Bayesian prediction intervals for future observations in either the one- or                   

two-sample schemes. 

2.1. Bayesian One-Sample Prediction 

Let P(G) ≡	
(&%G), 1 ≤ 	@ ≤ 	� − ( denotes the future (unobserved) lifetime of the @ST component to fail.              

The conditional probability density functions of PG given the parameter 	 and that ( components can be written as              

(see Arnold et al. (1992)) 

ℎU*P(G); �, 	+ =
V�(@)W��*P(G); �, 	+ − ��*
(&); �, 	+XG��W1 − ��*P(G); �, 	+X"�&�G × W1	 − 	��*
(&); �, 	+X�("�&)��(P(G); �, 	),	      (7) 

where, 

V�(@) = 	@	 9� − (@ :.	               (8) 

Substituting (1) and (2) in (7) we obtain for the �ℎ��(�, 	) model 

ℎU*P(G); �, 	+ = V�(@) ∑ ._(@)	(ℓ)	G��ℓ12 			�	P(G)(���	) exp _P(G)� 	− �	BG(ℓ)(�`(E)� − ��(>)� )a , P(G) > 
(&),	      (9) 

where, 

BG(ℓ) = � − ( − @ + ℓ + 1	            (10) 

and .G(ℓ) is the same as .#(/), given in (3), with @ and ℓ instead of ' and /	. 
The Bayesian predictive density function of Y = y_ ((a)) is given by (see Dunsmore (1974)) 

ℎ�∗(P(G)|
) = ∫ ℎU*P(G)I�, 	)	?�∗	(�I	, 
+M�, P(G) > 
(&),	         (11) 

where, ℎU*P(G)I�, 	)	is the conditional pdf of d	 = 	P(G) ≡	
(&%G), @ = 1, 2,⋯ , � − ( and	?�∗(�|	, 
) is the 

posterior density of the parameters � and 	 . 

Using (5), (9), and (11), we have 

ℎ�∗*P(G)I
+ = 	V�(@)��Γ(M2 + 1)∑ ∑ fE(ℓ)f=(0)�`(E)�gD�h(E)�

iCE(ℓ)j�h(E)
� ���(>)� k%l(�)%CDm

nOoD#��012G��ℓ12 	,	       (12) 

where, .#(/) and 7(
) are as given in (3), while V�(@) and BG(ℓ) are as given, respectively, by (8) and (10). 

Bayesian prediction bounds for the future order statistics P(G) ≡	
(&%G) are obtained by evaluating p(Wd(G) ≥
r�|s;	
] for some r�. It follows from (12), that 

p(Wd(G) ≥ r�Is; 
] = ∫ ℎ�∗uvD 	*y(x)I
+dy(x) 	= V�(@)��Γ(M2) ∑ 	∑ fE(ℓ)	f=(0)	)
CE(ℓ)iCE(ℓ)j�zD����(>)

� k%l*�+%CDm
nO#��012G��ℓ12 	.	     (13) 

A 100	(1 − {)	% Bayesian prediction interval for P(G) ≡	
(&%G) is such p([)*
+ ≤ 	d(G) ≤ 	~(
)] 	= 	1 −
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{,	where )(
) and ~(
) are the lower and upper bounds for P(G) ≡	
(&%G) . Thus equating (13) to 1 − �
  ) and 

�
 	,                   

we obtain 

V�(@)��Γ(M2)∑ ∑ ��(ℓ)��(�))
CE(ℓ)iCE(ℓ)j��*�+����(>)

� k%l*�+%CDm
nO#��012G��ℓ12 = 1 − �

 	        (14) 

and 

V�(@)��Γ(M2)∑ ∑ ��(ℓ)��(�))
CE(ℓ)iCE(ℓ)j��*�+����(>)

� k%l*�+%CDm
nO#��012G��ℓ12 = �

 	.	        (15) 

2.2. Bayesian Two-Sample Prediction 

Suppose that we have two samples, the informative one (past sample) is a doubly Type-II censored sample,           

while the second one (future sample) is an ordered sample from the same population. Based on the past sample,               

we would like to obtain Bayesian prediction bounds for the BST observation �(C), B = 1, 2,⋯ ,A . To do this, let �C be the 

BST ordered observation in the future sample of size A whose pdf is given by (\ref (e1)). The conditional density function 

of �(C) for a given parameter � and 	 is 

ℎ�*�(C); �, 	+ = V (B)W1 − ��*�(C); �, 	+X��CW��*�(&); �, 	+XC����*�(C); �, 	+,	       (16) 

where, 

V (B) = B 9AB :.	              (17) 

Applying (1) and (2), in (16), we get 

ℎ�*�(C); �, 	+ = V (B)∑ .C(�)�		C���12 	�(C)����
5 _�(C)� − �	BC∗(�)	(��(�)� − 1)a , �(C) > 0,	      (18) 

where, 

BC∗(�) = A − B + � + 1	             (19) 

and 

	.C(�) is given in (3) with B and � replacing ' and ℓ. 

Applying the posterior density function (18) and the conditional probability density function (18) in (11) the 

Bayesian predictive density function of �(C), B	 = 	1, 2,⋯ ,A is then given by 

ℎ ∗*�(C)I
+ = ∫ ℎ�u2 	*�(C); �, 	+?�∗*�I	, 
+M	 = V (B)��Γ(M2 + 1)∑ ∑ f=(0)f�(�)�	�	��(�)
�

i��∗ (�)j��(�)
� 	�	�k%�*�+%�Dm

�OoD#��012C���12 	,		  (20) 

where, 	M2 is given in (6) and BC∗(�) is given by (19). 

Bayesian prediction bounds for the future order statistics �(C), B	 = 	1, 2,⋯ ,A	, are obtained by evaluating 

p(W�(C) ≥ r I�; 	
]	for some r . It follows from (\ref (e28)) that 
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p(W�(C) ≥ r I�; 	
	] = ∫ ℎ ∗*�(C)I
+M�(C)uv� 	= V (B)��Γ(M2) ∑ ∑ f=(0)f�(�)
��∗ (�)i��∗ (�)j��(�)

� 	�	�k%�*�+%�Dm
�O#��012C���12 .	    (21) 

A 100	(1 − {)% Bayesian prediction interval for �(C), B	 = 	1, 2,⋯ ,A is such Pr 9)*
+ ≤ 	�(C) ≤ 	~*
+: = 	1 −
{, where )*
+ and ~*
+ are the lower and upper bounds for �(C), B	 = 	1, 2,⋯ ,A. Thus equating (\ref(e29)) to 1	 − �

  and 
�
 , 

we obtain 

V (B)��Γ(M2)∑ ∑ ��(�)��(ℓ)
��∗ (�)���∗ (�)���*�+����%l*�+%CD�

nO#��012G��ℓ12 = 1 − �
 	        (22) 

and 

V (B)��Γ(M2)∑ ∑ ��(�)��(ℓ)
��∗ (�)���∗ (�)���*�+����%l*�+%CD�

nO#��012G��ℓ12 = �
 	.	         (23) 

3. TWO-PARAMETER CASE 

This section is concerned with Bayesian prediction of future observations of the Chen distribution when both of 

the two parameters � and 	 are unknown. This bivariate prior density function was used by Sarhan et al. (2012) in their 

parameter estimation for a tow-parameter bathtub-shaped lifetime distribution. 

Suppose that the prior belief of the experimenter is measured by the bivariate prior density function for � and, 

given by 

?(�, 	) = 	?�(�)? (	),	             (24) 

where, ?�(�) is a conjugate prior given by (4) and 

? (	) = 	 C�E�F(G�) 		G���	��C�	� , 		 > 	0, (@ , B 	> 	0).	          (25) 

Using the likelihood function given by (3) and the joint prior density function given by (24),                                     

the joint posterior density function of \lambda and \beta is 

? ∗	*�, 	, I
+ = � 	�&�#%GD	&�#%G� ∑ .#(/)#��012 	∏ 
4��� exp6∑ x(�)� �1¡ 	− b_2	β − λWT(x) + b�X	8,&41#     (26) 

where, �  is the normalizing constant given by 

� �� = Γ(M2)∑ .#(/)#��012 	¦2*
+,	            (27) 

where, M2 is given in (6) and 

¦2*
+ = ∫ �>g=oE�
Wl*�+%CDXnO

u2 exp6(	 − 1)∑ ln 
(4) + ∑ 
(4)� − B 	&41# 	&41# 8dβ.	        (28) 

3.1. Bayesian One-Sample Predictions 

Similarly and as before, let further, P(G) ≡	
(&%G), 1 ≤ 	@ ≤ 	� − ( be the @ST unobserved lifetime, which needs 

to be predicted. The conditional density of P(G) is given by (9). Applying the conditional density function given by (9) and 

the posterior density function given by (26), the Bayes predictive density function of P(G) is then given by 
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ℎ©∗*P(G)I
+ = ∫ ∫ ℎU*P(G)I�, 	)u2u2 	? ∗(�, 	|	
)	M�	M	 =
Γ(M2 + 1)	� 	V�(@) ∑ ∑ .G(ℓ)	.#(/)¦�*P(G), 
+,#��012G��ℓ12 																																																																																																																			(29) 

where, 

¦�(P(G), 
) = ∫ �>g=oE�oD	`(E)�gD �ª«6(���)∑ ¬­ 	�(;)%∑ �(;)> %`(E)� �C��>;®=>;®= 8
iCE(ℓ)j�h(E)

� ���(>)� k%CD%l*�+m
nOoD

	N�
u2 M		  

Bayesian prediction bounds of d(G) are obtained by evaluating p([d(G) ≥ r©|	
] for some r©	. It follows from (29) 

PrWd(G) 	≥ r©I
X = ∫ ℎ©∗*P(G)I
+MP(G)	uv¯ = Γ(M2)� 	V�(@) ∑ ∑ fE(ℓ)f=(0)	)CE(ℓ)
#��012G��ℓ12 	¦ *r©, 
+,	     (30) 

where, 

¦ *r©, 
+ = ∫ �>g=oE� �ª«6(���)∑ ¬­ �(;)	>;®= %∑ �(;)�>;®= 	�C��8
iCE(ℓ)j�z�̄���(>)

� k%CD%l*�+m
nO

u2 M	.	         (31) 

A 100	(1 − {)	% Bayesian prediction interval for P(G) ≡	
(&%G) is such p([)*
+ ≤ 	d(G) ≤ 	~(
)] 	= 	1 − {, 
where )(
) and ~(
) are the lower and upper bounds for P(G) ≡	
(&%G). Thus equating (30) to 1	 −	 � 	and 

�
 , we obtain 

Γ(M2)� 	V�(@) ∑ ∑ fE(ℓ)f=(0)CE(ℓ)
#��012G��ℓ12 ¦ *)*
+, 
+ = 1 − �

 	         (32) 

and 

Γ(M2)� 	V�(@) ∑ ∑ fE(ℓ)f=(0)CE(ℓ)
#��012G��ℓ12 ¦ *~*
+, 
+ = �

 	,	         (33) 

where, ¦ ()(
), 
) and ¦ (~(
), 
) are given by (31) with r© being replaced, respectively, by )(
) and ~*
+.  
3.2. Bayesian Two-Sample Prediction 

As before, assume that �C is the BST ordered lifetime in a future, unobserved, sample of A components whose 

lifetimes follow the �ℎ��(�, 	) distribution given by (1). Thus, the density function of �C is given by (18).                       

Applying the conditional and posterior density functions given by (18) and (26), respectively, the Bayesian predictive 

density function of �C , B	 = 1, 2, … ,A, is given by 

ℎ±∗(�(C)|
) 	= ∫ ∫ ℎ�*�(C)I�, 	)u2u2 	? ∗(�, 	|	
)	M�	M		  
= Γ(M2 + 1)� 	D 	(b) ∑ .C(�).#(/)¦©*�(C), 
+,����12           (34) 

where, 

¦©*�(C), 
+ = ∫ �>g=oE��(�)�gD �ª«6(���)∑ 	¬­	ª(³)³́®� %∑ ª(³)�³́®� �C��8
iC�∗(�)j�µ(�)

� ��k%CD%l(�)m
nO

u2 M	  

Bayesian prediction bounds for the future order statistics �(C) , where B	 = 	1, 2,⋯ ,A , are obtained by evaluating 

p([�(C) ≥ r±|	
	] for some r± . It follows from (34) that 
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Pr[Z(�) ≥	\nu±|	
] 	= ∫ ℎ±∗*�(C)I
)uv¹ 	M�(C)	  
= Γ(M2)� 	D 	(b) ∑ ∑ f�(�)f=(0)C�∗(�) ¦±*r±, 
+#��012 ,����12           (35) 

where 

¦±*r±, 
+ = ∫ �>g=oE�gD �ª«6(���)∑ 	¬­	ª(³)³́®� %∑ ª(³)�³́®� �C��8
�C�∗(�)��z¹����%CD%l(�)�

nO
u2 M	.	         (36) 

A 100	(1 − {)	% Bayesian prediction interval for �(G) is such p([)*
	+ ≤ 	�(C) ≤ 	~*
	+] 	= 	1 − {,	                      
where, )*
	+ and ~*
	+ are the lower and upper bounds for�(C). 

Thus equating (35) to 1	 −	 �  and 
�
 , we obtain  

Γ(M2)� 	D 	(b) ∑ ∑ f�(�)f=(0)C�∗(�) ¦±*)*
	+, 
+	#��012 	= 1 − �
 ����12 	         (37) 

and 

Γ(M2)� 	D 	(b) ∑ ∑ f�(�)f=(0)C�∗(�) ¦±*~*
	+, 
+	#��012 	= 1 �
 ����12 	         (38) 

where, ¦±()(
), 
) and ¦±(~(
), 
) are given by (36) with r± being replaced, by )(
) and~(
), respectively. 

4. NUMERICAL ILLUSTRATIONS 

This section is devoted to illustrating both the one- and two-sample prediction assuming that the (unknown)            

two-parameter case. Where, two numerical examples are given to illustrate the results of Sections 3.1 and 3.2. The results 

related to one-parameter case may be similarly dealt with. 

4.1. Example 1: (One-Sample Prediction) 

The 95	% Bayesian prediction bounds for the remaining (� − () order statistics '	 = 1, 2,⋯ , � − (, are obtained 

according to the following steps: 

1. For given values of the hyper parameters @� and B� a generated value of � is obtained from the prior distribution 

with pdf (4). 

2. For a given value of the hyper parameters @  and B_2 a generated value of 	 is obtained from the prior 

distribution with pdf (25). 

3. Using the generated values of \lambda and 	 from Steps 1 and 2, a sample of size � is generated from the 

�ℎ��(�, 	) distribution with pdf, which is given by (1). 

4. Using some sorting routine, a doubly Type-II censored sample of size (( − ' + 1)	from the Chen (\lambda, \beta) 

distribution is then obtained.  

5. Based on the above generated doubly Type-II censored samples of size (( − ' + 1), the 95	% Bayesian prediction 

bounds for the remaining (� − () ordered values
(&%�), 
(&% ), ⋯ , 
(") , are then numerically calculated by 

solving Equations (32) and (33). 
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In this example, three different values for the sample size, namely, �	 = 	20, 30	½(	40, and the hyperparamters 

@�, B�, @  and B  are chosen to be 2, 3, 2 and	2, respectively. This particular choice of the hyperparamters suggests that 

� = 1.1552 and 	 = 1.7327. Table 1 presents 95	% Bayesian prediction intervals for 
(&%#) 	≡ 	 P#, ' = 1,⋯ , 5, and their 

corresponding lengths. 

The percentage coverage of each P#, ' = 1,⋯ , 5 , can be obtained by generating 10,000 future samples each of 

size � − ( = 5 , from the same �ℎ��(�, 	) distribution with cdf given by (1), such that P� > 
&, then calculate the actual 

predicted levels of P# , where ' = 1, 2,⋯ , 5. These percentage coverages are also displayed in Table 1. 

Table 1: 95 % Bayesian Prediction Intervals for ÀÁ, ÀÂ, ⋯ , ÀÃ 

Ä  ÀÁ ÀÁÂ ÀÅ ÀÆ ÀÃ 

15 
1∗ 95.20 % 95.85% 96.63% 97.66% 98.27% 2∗ (0.4196, 0.6592) (0.4358,0.8052) (0.4678,0.9665) (0.5167,1.1767) (0.5948,1.5357) 3∗ 0.2396 0.3694 0.4986 0.6600 0.9409 

25 
1∗ 96.38% 96.94% 97.24% 97.53% 97.76% 2∗ (0.7861,0.9827) (0.7982,1.1120) (0.8222,1.2583) (0.8594,1.4515) (0.9203,1.7839) 3∗ 0.1967 0.3139 0.4361 0.5921 0.8635 

35 
1∗ 95.64% 96.26% 97.04% 97.74% 97.69% 2∗ (0.8021,0.9724) (0.8130,1.0830) (0.8349,1.2078) (0.8692,1.3729) (0.9261,1.6594) 3∗ 0.1703 0.2700 0.3729 0.5037 0.7333 

 		1⋆	Simulated prediction levels of P#, ' = 1,⋯ , 5 . 

		2⋆ Bayesian prediction intervals for P#, ' = 1,⋯ , 5	. 
		3⋆ Length of the Bayesian prediction intervals 

4.2. Example 2: (Two-Sample Prediction) 

In this example, an “observed” doubly Type-II censored sample, 
(#%�), 
(#% ), ⋯ , 
(&), is generated by using 

Steps 1-4, as given in Section (4.1). The values of �, @�	, B�	, @ 	and B  are chosen as in the above example. Based on these 

values and the generated sample, the 95	% Bayesian prediction bounds for a future “unobserved” sample of size A	 = 5, 

�(�), �( ), ⋯ , �(È), are obtained by solving Equations (37) and (38), separately. The 95% Bayesian prediction intervals for 

�(0), / = 1,⋯ , 5, are presented in Table (2) together with their corresponding lengths. 

The percentage coverage of each �0 , / = 1,⋯, 5 , can be obtained by generating 10,000 future samples each of 

size m=5 , from the same �ℎ��(�, 	) distribution with cdf given by (1), then calculate the actual prediction levels of �0 , 

where / = 1, 2,⋯ , 5. These percentage coverages are also displayed in Table 2. 

Table 1: 95 % Bayesian Prediction Intervals for ÉÁ, ÉÂ, ⋯ , ÉÃ 

Ä  ÉÁ ÉÂ ÉÅ ÉÆ ÉÃ 

15 
1∗ 95.97% 96.09% 96.08% 96.06% 97.17% 2∗ (0.0056, 0.4291) (0.0432,0.6038) (0.1089, 0.7816) (0.2020, .0059) (0.3388, .3876) 3∗ 0.4235 0.5606 0.6727 0.8039 1.0488 

25 
1∗ 96.53% 96.46% 95.98% 95.70% 95.56% 2∗ (0.0071, 0.4978) (0.0549, 0.6961) (0.1372, 0.8926) (0.2517,1.1338) (0.4166,1.5315) 3∗ 0.4907 0.6412 0.7554 0.8821 1.1149 

35 
1∗ 96.04 % 96.00% 95.92% 95.49% 95.86% 2∗ (0.0073, 0.4602) (0.0540, 0.6481) (0.1318, 0.8332) (0.2389,0.0571) (0.3936,1.4197) 3∗ 0.4529 0.5941 0.7014 0.8182 1.0261 
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1⋆	Simulated prediction levels of �0 , / = 1,⋯ , 5 . 

2⋆ Bayesian prediction intervals for �0 , / = 1,⋯ , 5	. 
3⋆ Length of the Bayesian prediction intervals 

5. CONCLUSIONS 

In this article, Bayesian prediction bounds are obtained for future observations from the two parameter 

�ℎ��(�, 	) distribution. It has been noticed from Tables 1 and 2 that, which prediction intervals are affected by increasing 

n, and in this case, the coverage probabilities are quite close to the confidence levels 95 %, and therefore the intervals tend 

to perform very well in terms of simulated coverage probabilities. The Bayesian prediction intervals for the smallest and 

the largest future ordered lifetimes, which are practically of some special interest, are considered in the simulation.           

The aim of this simulation is to show how good is the given Bayesian prediction intervals for the future lifetimes. The 

simulated percentage converges are all quite close to the nominated ones. 
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